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Spatially Sequential Turn-On of Spontaneous
Emission from an Atomic Wave Packet
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We discuss a simple example demonstrating that spontaneous emission from
ª space-time-super posedº atomic center-of-mass wave packets is nontrivially and
time-dependent modified with respect to the standard dipole pattern typical of
ª space-superposedº wave packets. Our approach provides an approximate
description of a nonsimultaneous interaction of an electromagnetic field with
different parts of a wave packet.

1. INTRODUCTION

Standard treatments of spontaneous emission from atomic wave packets

(Cohen-Tannoud ji et al., 1991; Graham et al., 1992; RzaË zÇ ewski and ZÇ akowicz,

1992; Ren et al., 1992; RzaË zÇ ewski et al., 1994; Steuernagel and Paul, 1995;

Stoop and RzaË zÇ ewski, 1995) assume situations where the atomic excited state

couples to the electromagnetic vacuum at all points of the wave packet ª at

t 5 0.º For t . 0 the atom starts to decay. The beginning of this process is
assumed to take place at all points of the wave packet simultaneously. For-

mally this means that at t 5 0 the wave packet is in a superposition of the

kets | r, 1 & , where r is an eigenvalue of the atomic center-of-mass position

operator, and ª 1 º means an electronically excited state. What happens for

t , 0 is usually ignored.
An experimental procedure that leads to such a situation may be based

on a simultaneous excitation of the atom at all points occupied by the wave

packet. Alternatively, one can think of situations where a metastable long-

lived state is coupled to the vacuum reservoir by a simultaneous turn-on of
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an electric field in the whole region where the atom is supposed to reside.

It is clear that the outlined scenario (referred to below as a ª simultaneous

spontaneous emission,º SSE) does not cover all the experimental possibilities.
First of all, the atomic wave packets can be macroscopically extended. This

happens practically in all atom interferometer experiments where a phase

shift is produced by applying different fields to different parts of the interfering

wave packets. Although typical experiments involve static arrangements,

there is basically no problem with manipulating the atoms in a fully controlla-

ble time-dependent manner. One can imagine, for example, a situation where
different parts of the wave packet are either nonsimultaneously excited or

nonsimultaneously coupled to the vacuum. Actually, at the moment of writing

the paper we are aware of an experiment where the latter possibility was

practically realized. It is interesting that the experimental data do not com-

pletely agree with the standard SSE computations.

The work of Cohen-Tannoudj i et al. (1991) and Graham et al. (1992)
suggests that either there is no influence of the coherence of an atomic wave

packet on the radiated photons, or there is at least no coherence in the emitted

light if the atomic wave packets do not overlap. The work of RzaË zÇ ewski and

ZÇ akowicz (1992), on the other hand, shows clearly that the spectral density

of radiation carries some information about the shape of the wave packet
even if one considers a two-peaked Gaussian whose peaks are separated by

several wavelengths of photons and are essentially nonoverlapping. The two-

peaked wave function in position space translates into an oscillatory wave

function in momentum space, therefore manifesting the modified probability

distribution of momenta in the wave packet. This momentum distribution

implies a distribution of Doppler shifts in the spectral density of the emitted
light. This interesting result means that, in principle, one can investigate the

structure of atomic wave packets by detecting photons emitted during such

an apparently incoherent process as spontaneous emission.

In the discussed experiment (Robert et al., 1992) a two-peaked hydrogen

wave packet was prepared in an atomic interferometer in the internal metasta-

ble 2s1/2 state and arranged to enter a region of space with an electric field
where the Stark mixing between the 2s1/2 and 2p1/2 states led subsequently

to spontaneous emission of a Lyman- a photon. Since the atom was moving,

different parts of the wave packet were coupled to the field at different times

and thus the spontaneous decay was sequentially turned on. The nonsimultane-

ity of the coupling was not taken into account by RzaË zÇ ewski and ZÇ akowicz

(1992), which may be a source of the disagreement between the theory and
the experiment.

A nonsimultaneous coupling between the field and the atom will gener-

ally lead to a complicated, infinite set of coupled integrodifferential equations

that are quite difficult to solve even numerically. We have decided therefore
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to consider a problem which on one hand is simpler and on the other exhibits

physical properties which are expected to occur if a nonsimultaneous coupling

is involved. The results we discuss cannot be directly compared to the experi-
mental data for two reasons. First of all, to simplify numerical computations

we shall assume that the wave packet is a one-peaked and not a two-peaked

Gaussian. Second, we model the nonsimultaneity by considering an ideal

situation where the decay is turned on by a moving step function. The

experiment was not that ideal and the sequential turn-on was much less abrupt.

Nevertheless, in spite of these simplifications, the result we report is
highly nontrivial. It shows that the ª nonsimultaneous spontaneous emmissionº

(NSSE) is drastically modified with respect to the SSE case. The radiation

pattern exhibits a time-dependent anisotropy which depends on details of the

turn-on. In the infinite-velocity or infinite-time limit it reduces to the ordinary

Doppler-modified dipole pattern of RzaË zÇ ewski et al.

2. SPONTANEOUS EMISSION FROM A ª SPACE-TIME
SUPERPOSEDº ATOMIC WAVE PACKET

The standard analysis of SSE involves ª equal-time and spacelikeº super-
positions of the atomic center-of-mass eigenstates. In what follows we shall

consider superpositions of the center-of-mass eigenstates which additionally

start to decay in a position-dependent way. One can say that the choice of

the ª t 5 0º varies from point to point. We will concentrate on the simple

case involving a single Gaussian whose decay is turned on by a propagating
step function moving in the 2 z direction with a constant velocity v. Some

preliminary results of such computations were briefly discussed in Czachor

and You (1996). More complicated examples, including the case of a ª beadedº

two-Gaussian wave packet, will be discussed elsewhere.

We begin with the nonrelativistic dipole (RWA) Hamiltonian

H 5
p2

2M
1 HA 1 HF 1 HAF (1)

with

HA 5
1

2
" v 0 s 3

HF 5 o
k, m

" v ka
²
k m ak m

HAF 5 2 i o
k, m

" gk m e ik ? r s +ak m 1 h.c. (2)
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which are kinetic, internal, free field, and dipole interaction parts, respectively.

The dipole coupling strength is gk m 5 %k Ã (e Ã ? ek m )/ " , where e Ã is a unit

vector of the dipole operator, and Ã is the dipole moment of the electronic
transition; e m , m 5 1, 2, are the photon polarization vectors, and %k 5
! 2 p " v k/9 is the electric field strength per photon in the quantization vol-

ume 9.

We assume the state of the atom±field system to be given by

| c s & 5 # dr a t(r) | r; 1 ;0 &

1 o
k, m # dr b t(r, k, m ) | r; 2 ;k, m & (3)

where

a t(r) 5 1 1

2 p " 2
3/2

# dp a t(p)e ip ? r/ "

b t(r; k, m ) 5 1 1

2 p " 2 3/2 # dp b t(p; k, m )e i(p 2 " k) ? r/ " (4)

with p and r being the center-of-mass momentum and position, ª 1 º (ª 2 º )

correspond to the excited (ground) internal atomic state, and k, m denote the

momentum and polarization of the emitted photon, respectively.

The solution of the above model for the case of SSE is given by (RzaË zÇ ew-

ski and ZÇ akowicz, 1992)

a t(p) 5 a 0(p)e 2 s0t Q ( 2 t) 2 ( g 1 s0) t Q (t)

b t(p, k, m ) 5 2 a 0(p) gk m
e 2 ( g 1 s0)t Q (t) 2 e 2 skt Q (t)

g 1 s0 2 sk

5 2 Q (t) a 0(p)gk m
e 2 ( g 1 s0)t 2 e 2 skt

g 1 s0 2 sk

(5)

with

s0 5
i

" 1 p2

2M
1

1

2
" v 0 2

sk 5
i

" F (p 2 " k)2

2M
2

1

2
" v 0 1 " v G (6)
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where g determines the lifetime. The step function Q (t) is 1 for t $ 0 and

0 otherwise. The Q ( 2 t) in the exponents in (5) represents the fact that the

evolution of the wave packet for t , 0 is free and uncoupled to the vacuum
field reservoir. To generate the NSSE solution we superpose the center-of-

mass eigenstates with amplitudes (4), but now instead of Q (t), which is

responsible for the simultaneous turn-on, we take a more general superposition

with amplitudes containing Q ( f(t, r)). The ª switch-on functionº f (t, r)

depends on details of the experimental arrangement. Consider

| c NS & 5 # dr a t, v (r) | r; 1 ;0 &

1 o
k, m # dr b t, v(r, k, m ) | r; 2 ;k, m & (7)

where a t,v(r) 5 a t 1 z/v(r)/| c NS| and

b t, v(r, k, m )

5 b t 1 z/v(r; k, m )/| c NS| (8)

5 2
1

| c NS| 1 1

2 p " 2
3/2

# dp e i(p 2 " k) ? r/ " a 0(p)gk m

3
e 2 ( g 1 s0)(t 1 z/v) Q (t 1 z/v) 2 e 2 sk(t 1 z/v) Q (t 1 z/v)

g 1 s0 2 sk

(9)

5 2
1

| c NS| 1 1

2 p " 2
3/2

Q (t 1 z /v)e 2 ik ? r # dp e ip ? r/ " a 0(p)gk m

3
e 2 ( g 1 s0)(t 1 z/v) 2 e 2 sk(t 1 z/v)

g 1 s0 2 sk

(10)

The state (7) corresponds to the process where the emission is turned on by

the step function Q (t 1 z /v) propagating in the 2 z direction with velocity

v. (This should not be confused with a description in a moving frame!)
Obviously,

b t, ` (r, k, m ) 5 b t(r, k, m ) (11)

as it should be. The t ® ` limit of (7) will not differ from the analogous

simultaneous case since the contributions from Q (t (1 1 z /(t v))) for t ® `
and v fixed are important only for the z ® ` parts of the wave packet, which

are assumed to vanish. Nevertheless, this asymptotic behavior does not mean

that the problem completely reduces to the simultaneous case. The transient

modifications of the angular distribution shown in Fig. 2 are relatively long-
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lived and in principle can last arbitrarily long, depending on relative scales

of t natural, v, and the size of the wave packet.

Denote t 5 t (t, z) 5 t 1 z /v. The probability density for NSSE of
emitting a photon with momentum k and polarization m is

3t k m 5 # dr | b t, v(r, k, m ) | 2

5
| gk m | 2

2 p " | c NS|
2 # dp # dp8z # dz Q ( t )

3 exp F 2 2 g t 1
i

" F ( pz 2 p 8z)z 1
p 2

z 2 p 8
2

z

2M
t G G

3 a 0(p) a *0 ( px , py , p 8z) +(p)+*( px , py , p 8z) (12)

with

+(p) 5
1 2 exp[i (px kx/M 1 pyky/M 1 pzkz/M 2 d k 2 i g ) t ]

pxkx/M 1 pyky/M 1 pzkz/M 2 d k 2 i g
(13)

where we have defined d k 5 v k 1 " v 2
k /(2Mc2) 2 v 0. Without loss of general-

ity, we can put ky 5 0 (which simply specifies the coordinates). In this work,

we assume the wave packet is initially coherent and has a Gaussian distribution

in momentum space given by

a 0(p) 5 1 a

" ! 2 p 2
3/2

exp 1 2 p 2a 2

4 " 2 2 (14)

In this case the integration over py , pz , and p 8z can be performed to obtain

3tk m } # dpx # dz Q ( t ) exp 1 2 2 g t 2
p 2

xa
2

2 " 2 2 | F | 2 (15)

with

F (z, px) 5
i p M

| kz | F exp 1 b
2
1

a 2
t 2 0( h 1) 2 e 2 i D k t exp 1 b

2
2

a 2
t 2 0( h 2) G (16)

where 0( j ) 5 exp( 2 j 2) erfc( 2 i j ) is the exponentially scaled error func-

tion, and

b1 5 iz

b2 5 i 1 z 1
" kz

M
t 2
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D k 5 d k 1 i g 2
Pxkx

M

h j 5
Mat

2 " | kz | 1 D k 2 bj
2 " kz

Ma2
t 2 , j 5 1, 2 (17)

The time-dependent width of the wave packet (due to spreading) is a 2
t 5

a 2 2 2i " t /M. In the asymptotic limit of large t, only the second term in Eq.

(16) survives. Using the asymptotic expansion ! p h 0( h ) , i for h ® ` ,

we can show that our general result for (19) reduces to the SSE case (RzaË zÇ ew-

ski and ZÇ akowicz, 1992) if v ® ` .

The total probability of spontaneous emission is now

o
k, m

3tk m 5 # d V k (1 2 | ep ? ek | 2)Pt( u ) (18)

with Pt( u ) the reduced probability distribution, defined as

P t( u ) 5 # d v k 4t( v k)

4t( v k) 5
3 g a 2

16 p 3 " 3| c NS|
2 # dpx # dz Q ( t )

3 exp 1 2 2 g t 2
p 2

x a 2

2 " 2 2 | F (z, px) | 2 (19)

and u is the polar angle between k and the z axis.
For the case of the hydrogen 2p1/2 ® 1s1/2 transition, the parameters are

g 5 (2 p ) ? 50 MHz, l 0 5 121.6 nm, recoil velocity vrecoil 5 " k0/M 5 3.25

m/s, and energy v recoil 5 " k2
0 /(2M ) 5 (2 p ) ? 13.328 MHz.

In Fig. 1, the results of the time-dependent (normalized) spectrum are

shown for the case of v 5 10 ? vrecoil and v 5 1 ? vrecoil. We have used a 5 l 0

as normally assumed for a cold atomic wave packet in the recoil limit. With
these parameters, the time a /v it takes to traverse the wave packet is much

less than the lifetime of the metastable 2s1/2 state, therefore neglecting its

decay is a well-justified approximation. We see that due to the time depen-

dence introduced by the swept turning-on process, a general broadening of

the spectrum is seen, but in the limit t ® ` , it approaches the result known
for the case of the SSE. This time-dependent broadening can be easily under-

stood if one considers a wave packet which is totally localized in a region

of space where the step function has not yet arrived. The spectrum must then

be completely flat (equal identically to 0) since the atom cannot radiate.

However, after the excitation (or coupling) is completed the atom will radiate



284 Czachor and You

Fig. 1. Normalized spectrum ( u 5 0) at three different times corresponding to the edge of the

moving theta function at z 5 0.5 l 0 (dotted line), z 5 0 (solid line), and z 5 2 0.5 l 0 (dashed

line). Dash-dotted lines show the unmodified Lorentzian natural lineshape. The step function

moves along the z axis with velocity v in the negative direction (from right to left).

and the radiation pattern must be nonzero. Our results show that the pattern
continuously deforms from a flat distribution to a Lorentzian. The dependence

on the polar angle u exists as well, but the results will not be explicitly shown

here. Instead we show in Figs. 2 and 3 the total integrated signal (over the

whole spectrum range) of the reduced (i.e., divided by the dipole pattern)

probability distribution. This quantity should be constant in the case of a

simultaneous spontaneous emission and is clearly modified by the nonsimulta-
neity of ª excitation.º The effect is transient and should asymptotically

approach the dipole distribution for very large t. Note nevertheless that the

range of time we consider in Fig. 2 is relatively large on the atomic scales

( 2 50 t natural , t , 1 40 t natural in Fig. 2). For the wave packet we consider,
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Fig. 2. The reduced angular distribution for v 5 1 ? vrecoil, with other parameters the same as

in Fig. 1, as a function of time and u . At t 5 0 the step function arrives at the center of the

Gaussian. An analogous plot is completely flat in the SSE case.

the effect should be observable for a few hundred natural lifetimes and can

be more long-lived for different wave packets and excitation velocities.

The results suggest that when the time of transit of the ª excitationº
through the wave packet is of the order of the lifetime of the excited state,

the properties of the spontaneous emission may be significantly modified.

One may speculate that this kind of modification may be the source of the

ª fringesº observed by Robert et al. (1992).

To complete the analysis let us mention that we have taken the initial

wave packet a 0(r) to be completely coherent. A more general treatment
would require treating both a t(r) and b t(r) as statistical wave functions

starting with a partially coherent a 0(r) described by the spatial coherence

function G (r, r8) 5 ^ a 0(r) a 0(r8) & . Our result can be easily extended to the

case of a partially coherent initial wave packet provided the coherence
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Fig. 3. The reduced angular distribution of radiation at the time corresponding to the edge of

the moving theta function at z 5 2 0.5 l 0 for three different velocities (in units of vrecoil). The

rest of the parameters are the same as in Fig. 1. For v 5 vrecoil the atom tends to radiate in the

direction of propagation of the ª excitation.º For v 5 0.1vrecoil the radiation is concentrated in

the direction perpendicular to the excitation. With growing velocity of the excitation the

distribution approaches the dipole pattern.

function G (r, r8) is given. Depending on the particular form of G (r, r8),
the propert ies of the spontaneous emission as given by the solution (12)

may be different. The richness of the structure we observe in such a

simple case suggests that the approach developed here may allow for a

determination of the partial coherence function G (r, r8) by studying its
NSSE. In a wider perspective, we can speculate that this relation is not

only restricted to the case of spontaneous emissions. It should also be true

for any other kind of nonsimultaneous interaction, such as scattering of

light from different parts of a wave packet at different times. In view of

the recent success in achieving the Bose±Einstein condensation of alkali

atoms (Anderson et al., 1995; Davies et al., 1995; Andrews et al., 1997;
Mewes et al., 1997) we expect that such a kind of nonsimultaneous interac-

tion scheme could provide a possible diagnostic scheme for detecting the

partial coherence function and revealing the off-diagonal long-range order

of the condensate.
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3. FINAL REMARKS

A closer look at the SSE solutions given in RzaË zÇ ewski and ZÇ akowicz

(1992) shows that they agree very well with an intuitive picture of what is
going on: We simply obtain a coherent superposition of the atom±photon

states representing Doppler-shifted emitted photons. The probability distribu-

tion of the atomic momenta manifests itself in an analogous distribution of

the frequency shifts with respect to the dipole pattern. This explains the

oscillatory behavior of the spectral density of radiation which is completely
unrelated to any photon interference. This is consistent with what we know

about entanglement of quantum states and its role for a two-particle interfer-

ence (Czachor, 1991). What is encourageing, however, is the fact that one

could obtain an identical result without any center-of-mass calculations, but

simply by taking a superposition of suitably Doppler-shifted Weisskopf±

Wigner wave functions.
This observation motivated the analysis presented in this paper. We

simply analogously superpose the Weisskopf ±Wigner wave functions, but in

addition to the Doppler and recoil shifts we take into account the fact that

parts of the wave packet which are ª excitedº at different times must have the

initial time of decay ª t 5 0º different for different points of the wave packet.

One may wonder whether on general grounds the approach is acceptable.
For example, the moving step-function excitation involves an interaction of

the initial wave packet with some external fields. As such, it may lead to a

decoherence of the atomic state. The decoherence±recoherence experiment

reported by the MIT group (Chapman et al., 1995) shows, however, that an

atomic wave packet may remain coherent after having interacted with a
laser beam and even having spontaneously emitted a photon, provided one

afterward purifies the state in a suitable correlation experiment.

To close these remarks, let us note that even the SSE is simultaneous

in only one reference frame. And even though the nonsimultaneity experi-

enced by a moving observer is not exactly of the kind we discuss in this paper,

it shows that superpositions of states corresponding to ª different positions and
different times of eventsº are physically unavoidable.
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